

GCE

Chemistry A

Unit F325: Equilibria, Energetics and Elements

Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

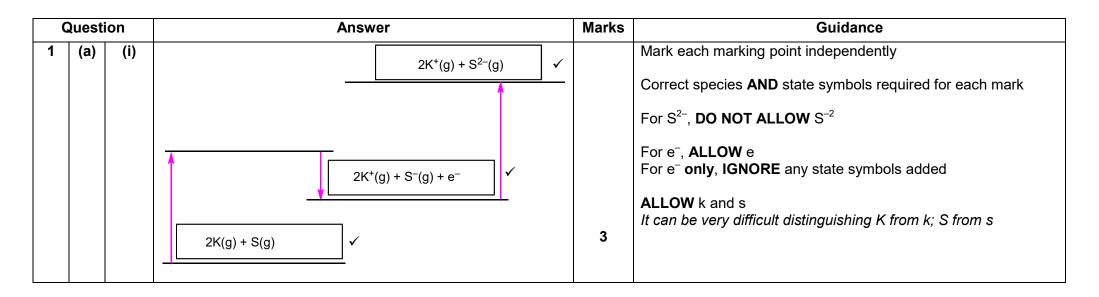
OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2014

June 2014

Annotations available in Scoris

Annotation	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or
	unstructured) and on each page of an additional object where there is no candidate response.
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
✓	Correct response


June 2014

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Meaning
Answers which are not worthy of credit
Statements which are irrelevant
Answers that can be accepted
Words which are not essential to gain credit
Underlined words must be present in answer to score a mark
Error carried forward
Alternative wording
Or reverse argument

The following questions should be marked using **ALL** appropriate annotations to show where marks have been awarded in the body of the text:

1(b), 2(b), 3(b)(ii), 4(c)(iii), 5(a), 5(b)(iv), 6c(iii), 6(d), 7(b)(ii) 8(d)

F	325	Mark So	June 2014	
1 (a	a) (ii)	 (The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) ✓✓ Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only DO NOT ALLOW 2nd mark without 1st mark Note: A definition for enthalpy change of formation will receive no marks 	2	IGNORE 'Energy needed' OR 'energy required'ALLOW one mole of compound is formed/made from itsgaseous ionsALLOW as alternative for compound: lattice, crystal, substance,solidIGNORE: $2K^*(g) + S^{2-}(g) \longrightarrow K_2S(s)$ (question asks for words)ALLOW 1 mark (special case) for absence of 'gaseous' only,i.e.the formation of one mole of a(n ionic) compoundfrom its ions (under standard conditions) \checkmark

June	2014
------	------

1	(a)) (iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2116 (kJ mol ⁻¹) award 2 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
			$-381 - (2 \times +89 + 279 + 2 \times +419 -200 + 640) \checkmark$ -381 - 1735 = - 2116 \sqcap (kJ mol^{-1})	2 -2 -2 (+ -2 (+ -2 (+ -2 -2 (+ -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	ALLOW for 1 mark ONE mistake with sign OR use of 2: -2027 (2 × 89 not used for K) -1697 (2 × 419 not used for K) -2516 (+200 rather than -200 for S 1st electron affinity) (+)2116 (wrong sign) -1354 (+381 instead of -381) (+)1354 (+1735 instead of -1735) -836 (-640 instead of +640) -1558 (-279 instead of +279) -1760 (-2 × 89 instead of +2 x 89) -439 (-2 × 419 instead of +2 x 419) -2120 (rounded to 3SF)
					 For other answers, check for a single transcription error or calculator error which could merit 1 mark DO NOT ALLOW any other answers, e.g. -1608 (2 errors: 2 × 89 and 2 x 419 not used for K) -846 (3 errors:)

June	2014
------	------

1 (k	(b)	Lowest melting point KI		FULL ANNOTATIONS MUST BE USED
		RbC <i>l</i> Highest melting point NaBr Correct order ✓		ORA throughout Response must clearly refer to ions for explanation marks
		Mark 2nd and 3rd marking points independently		2nd and 3rd marking point must be comparative
		Attraction and ionic size linked: Greater attraction from smaller ions/closer ions/larger charge density ✓ <i>Comparison needed</i>		DO NOT ALLOW incorrect named particles, e.g. 'atoms', 'molecules', Na, Cl, Cl ₂ , 'atomic', etc DO NOT ALLOW responses using nuclear size or attraction DO NOT ALLOW responses linked with Ioss of electrons IGNORE larger electron density
				ALLOW smaller sum of radii gives a greater ionic attraction IGNORE NaBr has greater ionic attraction IGNORE NaBr has smallest ionic radius (<i>not focussing on size of each ion</i>)
		Energy AND attraction/breaking bonds linked: More energy/heat to overcome attraction (between ions) OR More energy/heat to break (ionic) bonds ✓	3	 ASSUME bonds broken are ionic unless otherwise stated DO NOT ALLOW incorrect named particles, e.g. 'atoms', 'molecules', Na, Cl, Cl₂, 'atomic', etc Note: Comparison for energy only (<i>i.e. link between more energy and breaking bonds/overcoming attraction</i>)
		Total	10	

(Quest	ion	Answer	Marks	Guidance
2	(a)	(i)	(entropy) decreases AND (solid/ice has) less disorder/ more order/ fewer ways of arranging energy/ less freedom/ less random molecules ✓	1	ORA decreases and reason required for mark ASSUME change is for freezing of water unless otherwise stated DO NOT ALLOW atoms are more ordered
2	(a)	(ii)	(entropy) increases AND (CO ₂) gas is formed ✓ <i>Could be from equation with</i> CO ₂ (g)	1	increases and reason required for mark ASSUME gas is CO ₂ unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. H ₂) ALLOW more gas
2	(a)	(iii)	entropy decreases AND $3 \mod O_2 \text{ form } 2 \mod O_3$ OR $3O_2 \rightarrow 2O_3$ OR $3 \mod gas \text{ form } 2 \mod gas \checkmark$	1	decreases and reason required for markFor mol, ALLOW moleculesALLOW multiples,e.g. $1\frac{1}{2}O_2 \rightarrow O_3$; $O_2 + \frac{1}{2}O_2 \rightarrow O_3$ ALLOW $O_2 + O \rightarrow O_3$ Note: DO NOT ALLOW 2 mol gas forms 1 mol gas unlesslinked to $O_2 + O \rightarrow O_3$ IGNORE reaction forms fewer moles/molecules

2	(b)	CARE: responses involve changes of negative values		FULL ANNOTATIONS MUST BE USED
		Feasibility AND ∆ <i>G</i> Reaction becomes/is less feasible/not feasible AND		As alternative for 'less feasible' ALLOW 'less spontaneous' OR a comment that implies 'reaction no longer take place'
		ΔG increases OR ΔG becomes/is less negative/more positive OR $\Delta G > 0$ OR $\Delta H - T\Delta S > 0$		ALLOW for ΔG increases $\Delta G < 0$ only at low T
		OR $\Delta H - T\Delta S$ becomes/is less negative/more positive OR $\Delta H > T\Delta S \checkmark$ OR $T\Delta S$ becomes/is more negative than $\Delta H \checkmark$		DO NOT ALLOW $T\Delta S > \Delta H$ (comparison wrong way round)
				NOTE: Last statement automatically scores 2nd mark ALSO
				IGNORE significance IGNORE magnitude for 1st marking point
		 Effect on <i>T</i> ∆ <i>S</i>		
		$T\Delta S$ becomes more negative OR $T\Delta S$ decreases OR $-T\Delta S$ becomes more positive OR $-T\Delta S$ increases OR magnitude of $T\Delta S$ increases OR $T\Delta S$ increases \checkmark	2	DO NOT ALLOW <i>T</i> ∆ <i>S</i> increases IGNORE significance
				APPROACH BASED ON TOTAL ENTROPY: Feasibility with increasing temperature Reaction becomes less feasible/not feasible AND
				$\Delta S - \Delta H/T \text{ OR } \Delta S_{\text{total}} \text{ decreases/ less positive } \checkmark$ Effect on $\Delta H/T$ $\Delta H/T \text{ is less negative OR } \Delta H/T \text{ increases}$ OR $-\Delta H/T$ decreases
				OR magnitude of $\Delta H/T$ decreases \checkmark

2	(c)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 75.962 OR 75.96 OR 76.0 OR 76, award 2 marks		
			$\Delta S = (33 + 3 \times 189) - (76 + 3 \times 131)$ = (+)131 (J K ⁻¹ mol ⁻¹) \checkmark		DO NOT ALLOW –131
			$\Delta G = 115 - (298 \times 0.131)$ = (+) 75.962 OR 75.96 OR 76.0 OR 76 (kJ K ⁻¹ mol ⁻¹) \checkmark	2	ALLOW ECF from incorrect calculated value of ΔS
2	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 878 OR 877.9 OR 877.86, award 2 marks 		ALLOW total entropy statement: $\Delta S(\text{total}) = 0 \text{ OR } \Delta S(\text{total}) > 0$
			(For feasibility) $\Delta G = 0$ OR $\Delta G < 0$ OR $\Delta H - T\Delta S < 0$		ALLOW ECF from incorrect calculated value of ΔS from 2(c)(i)
			OR $T = \frac{\Box H}{\Box S} \checkmark$		ALLOW 878 up to calculator value of 877.862595 correctly rounded
			$T = \frac{115}{0.131} = 878 \text{ K} \checkmark$	2	
	1		Total	9	

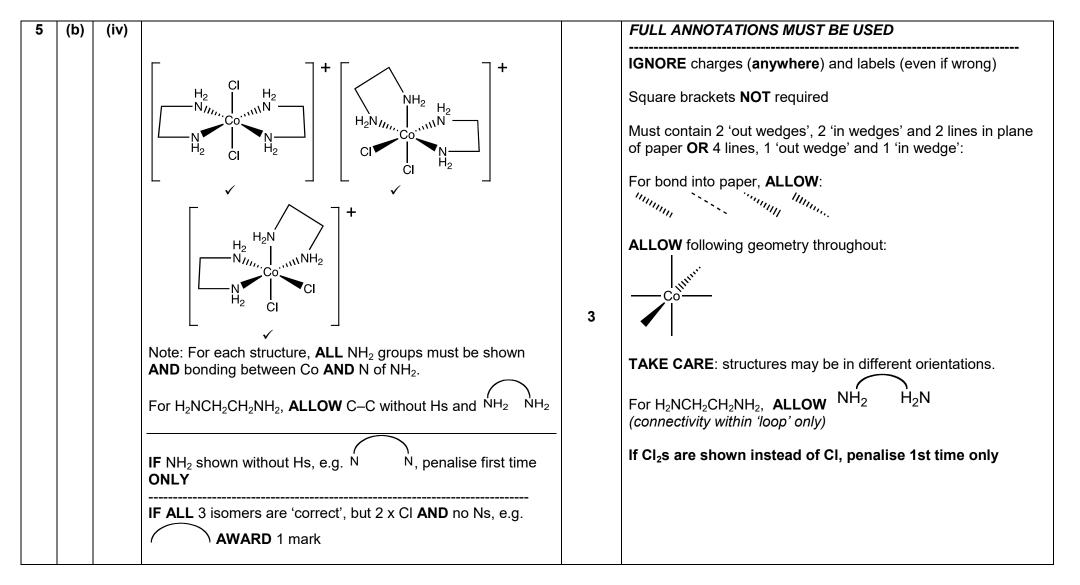
C	Question		Answer	Marks	Guidance
3	(a)		$(K_{c} =) \frac{[C_{2}H_{2}][H_{2}]^{3}}{[CH_{4}]^{2}} \checkmark$	1	Square brackets are essential State symbols not required. IGNORE incorrect state symbols
3	(b)	(i)	amount of $H_2 = 3 \times 0.168$ = 0.504 (mol) \checkmark	1	

(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IE answer = $0.153 \text{ mol}^2 \text{ dm}^{-6}$ award 3 marks		FULL ANNOTATIONS MUST BE USED
	IF answer = 0.153 with incorrect units, award 2 marks		IF there is an alternative answer, check to see if there is any
	IF answer from 3(b)(i) for $n(H_2) \neq 0.504$, mark by ECF. Equilibrium concentrations (from $n(H_2) = 0.504 \text{ mol dm}^{-3}$) [CH ₄] = 2.34×10^{-2} (mol dm ⁻³)		ECF credit possible using working below
	AND $[C_2H_2] = 4.20 \times 10^{-2} \text{ (mol dm}^{-3}\text{)}$		ALLOW [CH ₄] = $\frac{9.36 \times 10^{-2}}{4}$ mol dm ⁻³ AND [C ₂ H ₂] = $\frac{0.168}{4}$ mol dm ⁻³
	AND $[H_2] = 0.126 \pmod{\text{dm}^{-3}} \checkmark$ Calculation of K_c and units $K_c = \frac{4.20 \times 10^{-2} \times (0.126)^3}{(2.34 \times 10^{-2})^2} = 0.153 \checkmark \text{mol}^2 \text{ dm}^{-6} \checkmark$ 3 significant figures are required	3	AND $[H_2] = \frac{0.504}{4} \mod \text{dm}^{-3} \checkmark$ ALLOW ECF from incorrect concentrations or from moles From moles: 9.36×10^{-2} , 0.168 and 0.504 , $K_c = 2.45$ by ECF ALLOW dm ⁻⁶ mol ² DO NOT ALLOW mol ² /dm ⁶ ALLOW ECF from incorrect K_c expression for both calculation and units
(iii)	Initial amount of CH₄		
		IF answer = 0.153 mol ² dm ⁻⁶ , award 3 marks IF answer = 0.153 with incorrect units, award 2 marks IF answer from 3(b)(i) for $n(H_2) \neq 0.504$, mark by ECF. Equilibrium concentrations (from $n(H_2) = 0.504 \text{ mol dm}^{-3}$) [CH ₄] = 2.34 × 10 ⁻² (mol dm ⁻³) AND [C ₂ H ₂] = 4.20 × 10 ⁻² (mol dm ⁻³) AND [H ₂] = 0.126 (mol dm ⁻³) \checkmark Calculation of K_c and units $K_c = \frac{4.20 \times 10^{-2} \times (0.126)^3}{(2.34 \times 10^{-2})^2} = 0.153 \checkmark \text{mol}^2 \text{ dm}^{-6} \checkmark$ 3 significant figures are required	IF answer = 0.153 mol ² dm ⁻⁶ , award 3 marks IF answer = 0.153 with incorrect units, award 2 marks IF answer from 3(b)(i) for $n(H_2) \neq 0.504$, mark by ECF. Equilibrium concentrations (from $n(H_2) = 0.504$ mol dm ⁻³) [CH ₄] = 2.34 × 10 ⁻² (mol dm ⁻³) AND [C ₂ H ₂] = 4.20 × 10 ⁻² (mol dm ⁻³) AND [H ₂] = 0.126 (mol dm ⁻³) \checkmark Calculation of K_c and units $K_c = \frac{4.20 \times 10^{-2} \times (0.126)^3}{(2.34 \times 10^{-2})^2} = 0.153 \checkmark \text{mol}^2 \text{ dm}^{-6} \checkmark$ 3 significant figures are required

Mark Scheme

3	(C)				1		
		Change	Kc	Equilibrium amount of C ₂ H ₂ / mol	Initial rate		Mark by COLUMN
		temperature increased	greater	greater	greater		
		smaller container	same	smaller	greater		ALLOW obvious alternatives for greater/smaller/same, e.g.
		catalyst added	same	same	greater		increases/decreases; more/less
			\checkmark	✓	\checkmark	3	
3	(d)	oils/unsaturat	CK ONLY ✓ es: ation of alke ed molecule ammonia O ⊣Cl/hydroch	rine enes/unsaturated fa es R Haber process	ts/unsaturate	ed 1	IGNORE just 'fuel' IGNORE hydrogenation of margarine ALLOW hydrogenation of fats/oils DO NOT ALLOW explosives OR fertilisers
	•				Т	otal 10	

0	Questi	ion	Answer	Marks	Guidance
4	(a)	(i)	5 OR 5th (order) ✓	1	
4	(a)	(ii)	(stoichiometry in) rate equation does not match (stoichiometry) in overall equation ✓		ALLOW moles/ions/species/particles/molecules/atomsthroughout (<i>i.e. emphasis on particles</i>)IGNORE more reactants in overall equation
			Collision unlikely with more than 2 ions/species/particles \checkmark	2	If number of species is stated, ALLOW 3–5 only (rate equation contains 5 ions)
					DO NOT ALLOW negative ions would repel (<i>there is a mixture of positive and negative ions</i>) IGNORE more than two reactants collide (<i>not related to rate equation</i>)
4	(b)		initial rate/ mol dm ⁻³ s ⁻¹		ALLOW lines starting close to 0,0
			Straight upward line		ALLOW 2nd order line with 'straight' section early or late as long as an upward curve is seen between.
			AND starting at 0,0 ✓Curve with increasing gradient, AND starting at 0,0 ✓	2	
4	(c)	(i)	5.4(0) ✓ 614.4(0) ✓	2	IGNORE sign ALLOW 614 OR 610


June	2014
------	------

4	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 6.7×10^8 OR 670000000 dm ¹² mol ⁻⁴ s ⁻¹ , award 3 marks IF answer = 6.7×10^8 OR 670000000 with incorrect units, award 2 marks <i>k</i> to >2 SF: 6666666666.7 ✓		 ALLOW ECF from incorrect initial rates if 1st experimental results have not been used. (Look to 4(c)(i) to check) <i>i.e.</i> IF other rows have been used, then calculate the rate constant from data chosen. For <i>k</i>, ALLOW 1 mark for the following:
			OR		6.6×10^8 recurring
			<i>k</i> to 2 SF: 6.7 × 10 ⁸ OR 670000000 ✓ ✓		6.6×10^{8} 2 SF answer for <i>k</i> BUT one power of 10 out i.e. 6.7×10^{9} OR 6.7×10^{7}
			units: dm ¹² mol ^{−4} s ^{−1} ✓	3	ALLOW units in any order, e.g. $mol^{-4} dm^{12} s^{-1}$
4	(c)	(iii)	$(K_a =) 10^{-3.75} \text{ OR } 1.78 \times 10^{-4} \pmod{\text{dm}^{-3}} \checkmark$ $[\text{H}^+] = \sqrt{1.78 \times 10^{-4} \times 0.0200}$ $= 1.89 \times 10^{-3} \pmod{\text{dm}^{-3}} \checkmark$		FULL ANNOTATIONS MUST BE USEDFor ALL marks, ALLOW 2 SF up to calculator value correctlyrounded 1.77827941 \times 10 ⁻⁴ ALLOW $\sqrt{10^{-3.75} \times 0.0200}$ for first marking pointALLOW 1.88 \times 10 ⁻³ (mol dm ⁻³)
			initial rate = $6.7 \times 10^8 \times 0.01 \times 0.015^2 \times (1.89 \times 10^{-3})^2$ = 5.33×10^{-3} to 5.38×10^{-3} (mol dm ⁻³ s ⁻¹)		ALLOW ECF from calculated $[H^+(aq)]$ and calculated answer for <i>k</i> from 4(c)(ii)
			OR 5.3×10^{-3} to 5.4×10^{-3} (mol dm ⁻³ s ⁻¹) \checkmark Actual value will depend on amount of acceptable rounding in steps and whether figures kept in calculator even if rounding is written down. ALLOW any value in range given above.	3	e.g. If no square root taken, [H ⁺] = 3.56 x 10 ⁻⁶ mol dm ⁻³ and <i>rate</i> = 1.91 x 10 ⁻⁸ OR 1.9 x 10 ⁻⁸ by ECF
			Total	13	

(Question	Answer	Marks	Guidance
5	(a)	(Transition element) has an ion with an incomplete/partially- filled d sub-shell/d-orbital √		FULL ANNOTATIONS MUST BE USED
		Scandium/Sc and zinc/Zn are not transition elements \checkmark		ALLOW if ONLY Sc and Zn are used to illustrate d block elements that are NOT transition elements This can be from anywhere in the overall response in terms of Sc, Sc ³⁺ , Zn, Zn ²⁺ OR incorrect charges, i.e. only Sc ⁺ , Sc ²⁺ , Zn ⁺
		Electron configurations of ions Sc ³⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ✓		In electron configurations, IF subscripts OR caps used, DO NOT ALLOW when first seen but credit subsequently
		Zn ²⁺ AND 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ ✓		ALLOW 4s ⁰ in electron configurations IGNORE [Ar] IGNORE electron configurations for other Sc and Zn ions
				ALLOW for Sc ³⁺ : Sc forms a 3+ ion; ALLOW Sc ⁺³ ALLOW for Zn ²⁺ : Zn forms a 2+ ion; ALLOW Zn ⁺²
		Sc ³⁺ AND d sub-shell empty / d orbital(s) empty \checkmark Note: Sc ³⁺ must be the ONLY scandium ion shown for this mark		ALLOW Sc ³⁺ has no d sub-shell DO NOT ALLOW 'd sub-shell is incomplete' <i>(in definition)</i>
		Zn^{2+} AND d sub-shell full /ALL d-orbitals full \checkmark Note : Zn^{2+} must be the ONLY zinc ion shown for this mark	6	DO NOT ALLOW 'd sub-shell is incomplete' (in definition)

5	(b)	(i)	Donates two electron/lone pairs to a metal ion OR Co ³⁺ ✓ DO NOT ALLOW metal (complex contains Co ³⁺)		 ALLOW 'forms two coordinate bonds/dative covalent/dative bonds' as an alternative for 'donates two electron/lone pairs' <i>Two is required for 1st marking point</i> <i>Two can be implied using words such as 'both' or 'each'</i> For metal ion, ALLOW transition (metal) ion
			Electron/lone pair on N OR NH₂ (groups) ✓	2	Second mark is for the atom that donates the electron/lone pairs ALLOW both marks for a response that communicates the same using N as the focus: e.g. The two N atoms each donate an electron pair to metal ion
5	(b)	(ii)	[Co(H ₂ NCH ₂ CH ₂ NH ₂) ₂ C <i>l</i> ₂] ⁺ ✓	1	Square brackets AND + charge required DO NOT ALLOW any charges included within square bracketsALLOW $[Co(C_2H_8N_2)_2Cl_2]^+$ OR $[CoC_4H_{16}N_4Cl_2]^+$ ALLOW structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)IGNORE $[Co(en)_2Cl_2]^+$ simplifies questionWithin formula, ALLOW(Cl)_2, (Cl_2)ALLOW COWithin the context of the question, CO is Co
5	(b)	(iii)	6 ✓	1	

	F32	25	Mark Sche	eme	June 2014
5	(c)	(i)	O ₂ /oxygen bonds to Fe ²⁺ /Fe(II) ✓ $Fe^{2+}/Fe(II)$ essential for 1st marking point		ASSUME that 'it' refers to oxygen ALLOW O_2 binds to Fe^{2+} OR O_2 donates electron pair to Fe^{2+} OR O_2 is a ligand with Fe^{2+} IGNORE O_2 reacts with Fe^{2+} OR O_2 is around Fe^{2+}
			(When required,) O_2 substituted OR O_2 released \checkmark Fe^{2+} not required for 2nd marking point (e.g. IGNORE Fe)	2	ALLOW bond to O_2 breaks when O_2 required OR H ₂ O replaces O_2 OR vice versa ALLOW CO ₂ replaces O_2 OR vice versa ALLOW O ₂ bonds/binds reversibly
5	(C)	(ii)	$(K_{stab} =) \frac{[HbO_2(aq)]}{[Hb(aq)] [O_2(aq)]} \checkmark$ ALL Square brackets essential	1	ALLOW expression without state symbols (given in question)
5	(c)	(iii)	Both marks require a comparison Stability constant/ K_{stab} value with CO is greater (than with complex in O ₂) \checkmark		IGNORE (complex with) CO is more stable
			(Coordinate) bond with CO is stronger (than O ₂) OR CO binds more strongly ✓	2	ALLOW bond with CO is less likely to break (than O ₂) OR CO is a stronger ligand (than O ₂) OR CO has greater affinity for ion/metal/haemoglobin (than O ₂)
					ALLOW CO bond formation is irreversible OR CO is not able to break away IGNORE CO bonds more easily OR CO complex forms more easily
		•	Total	18	

18

Mark Cak

E20E

(Quest	ion	Answer	Marks	Guidance
6	(a)		$\begin{array}{rcl} CH_{3}COOH & + & H_{2}O \ \Rightarrow & H_{3}O^{+} & + & CH_{3}COO^{-}\checkmark \\ Acid 1 & Base 2 & Acid 2 & Base 1\checkmark \end{array}$	2	IGNORE state symbols (even if incorrect) ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels if linked by lines so that it is clear what the acid-base pairs are ALLOW A and B for 'acid' and 'base' IF proton transfer is wrong way around ALLOW 2nd mark for idea of acid-base pairs, <i>i.e.</i> CH ₃ COOH + H ₂ O \Rightarrow CH ₃ COOH ₂ ⁺ + OH ⁻ × Base 2 Acid 1 Acid 2 Base 1 \checkmark NOTE For the 2nd marking point (acid-base pairs), this is the ONLY acceptable ECF <i>i.e., NO ECF from impossible chemistry</i>
6	(b)	(i)	Water dissociates/ionises OR $H_2O \Rightarrow H^+ + OH^-$ OR $2H_2O \Rightarrow H_3O^+ + OH^- \checkmark$	1	ALLOW $K_w = [H^+] [OH^-]$ OR $[H^+] [OH^-] = 10^{-14} (mol^2 dm^{-6})$ IGNORE breaking for dissociation IGNORE water contains H ⁺ and OH ⁻ IGNORE H ₂ O \rightarrow H ⁺ + OH ⁻ <i>i.e. no equilibrium sign</i> IGNORE 2H ₂ O \rightarrow H ₃ O ⁺ + OH ⁻ <i>i.e. no equilibrium sign</i>

6	(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.15×10^{-11} , award 2 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
			$[H^{+}] = 10^{-3.06} = 8.71 \times 10^{-4} \text{ (mol dm}^{-3}) \checkmark$ $[OH^{-}] = \frac{1.00 \times 10^{-14}}{8.71 \times 10^{-4}} = 1.15 \times 10^{-11} \text{ (mol dm}^{-3}) \checkmark$ ALLOW answer to two or more significant figures 2SF: 1.1×10^{-11} ; 4SF: 1.148×10^{-11} ; calculator $1.148153621 \times 10^{-11}$	2	ALLOW 2 SF: 8.7×10^{-4} up to calculator value of 8.7096359 × 10^{-4} correctly rounded ALLOW alternative approach using pOH: pOH = $14 - 3.06 = 10.94$ \checkmark [OH ⁻] = $10^{-10.94}$ = 1.15×10^{-11} (mol dm ⁻³) \checkmark
6	(c)	(i)	$2CH_{3}COOH + CaCO_{3} \rightarrow (CH_{3}COO)_{2}Ca + CO_{2} + H_{2}O \checkmark$	1	IGNORE state symbolsALLOW = provided that reactants on LHSFor CO_2 + H_2O , ALLOW H_2CO_3 ALLOW Ca(CH_3COO)_2ALLOW (CH_3COO ⁻)_2Ca ²⁺ BUT DO NOT ALLOW if either charge is missing or incorrect

	F325		Mark Scheme		June 2014
6	(c)	(ii)	solution contains CH₃COOH AND CH₃COO ⁻ ✓	1	ALLOW names: ethanoic acid for CH ₃ COOH ethanoate for CH ₃ COO ⁻
					ALLOW calcium ethanoate OR (CH ₃ COO) ₂ Ca for CH ₃ COO ⁻
					IGNORE 'acid, salt, conjugate base; responses must identify the acid and conjugate base as ethanoic acid and ethanoate
					IGNORE ethanoic acid is in excess (<i>in question</i>) BUT DO ALLOW some ethanoic acid is left over/present/some ethanoic acid has reacted
					IGNORE equilibrium: $CH_3COOH \Rightarrow H^+ + CH_3COO^-$ Dissociation of ethanoic acid only

Mark S	Scheme
--------	--------

June	2014
------	------

6	(c)	(iii)	Quality of written communication, QWC 2 marks are available for explaining how the equilibrium		FULL ANNOTATIONS MUST BE USED
			system allows the buffer solution to control the pH on addition of H^+ and OH^- (see below)		Note: If there is no equilibrium equation then the two subsequent equilibrium marks are not available: max 2
			$CH_3COOH \Rightarrow H^+ + CH_3COO^- \checkmark$		DO NOT ALLOW HA \Rightarrow H ⁺ + A ⁻ DO NOT ALLOW more than one equilibrium equation.
			CH COOH reports with added alkali		ALLOW response in terms of H ⁺ , A [−] and HA
			CH ₃ COOH reacts with added alkali OR CH ₃ COOH + OH ⁻ \rightarrow OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ $\rightarrow \checkmark$		IF more than one equilibrium shown, it must be clear which one is being referred to by labeling the equilibria.
			Equilibrium \rightarrow right OR Equilibrium \rightarrow CH ₃ COO ⁻ \checkmark (QWC)		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
			CH ₃ COO [−] reacts with added acid \checkmark		
			Equilibrium \rightarrow left OR Equilibrium \rightarrow CH ₃ COOH \checkmark (QWC)	5	ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid

6	(d)			FULL ANNOTATIONS MUST BE USED
		FIRST, CHECK THE ANSWER ON ANSWER LINE		IF there is an alternative answer, check to see if there is any ECF credit possible.
		IF answer = 11.48 OR 11.5 (g), award 5 marks		Incorrect use of [H ⁺] = $\sqrt{(CH_3COOH) \times K_a}$ scores zero
		 [H⁺] = 10 ⁻⁵ (mol dm ⁻³) ✓		BUT IGNORE if an alternative successful method is present
				Incorrect use of K_w , 1 max for $[H^+] = 10^{-5}$ (mol dm ⁻³) BUT IGNORE if an alternative successful method is present
		$[CH_{3}COO^{-}] = \frac{1.75 \times 10^{-5}}{10^{-5}} \checkmark \times 0.200 = 0.350 \text{ mol } dm^{-3} \checkmark$		$ALLOW n(CH_{3}COONa/CH_{3}COO^{-}) = \frac{1.75 \times 10^{-5}}{10^{-5}} \checkmark \times 0.08 = 0.14(0) \text{ (mol)} \checkmark \checkmark$
		$n(CH_3COONa/CH_3COO^-)$ in 400 cm ³		Note: There is no mark just for
		$= 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol) }\checkmark$		$n(CH_3COOH)$ in 400 cm ³ = 0.200 × $\frac{400}{1000}$ = 0.08 (mol)
		mass CH₃COONa = 0.140 × 82.0 = 11.48 OR 11.5 (g) ✓	5	As alternative for the 4th and 5th marks, ALLOW : mass of CH ₃ COONa in 1 dm ³ = $0.350 \times 82.0 = 28.7$ g \checkmark
		For ECF , <i>n</i> (CH ₃ COONa/CH ₃ COO [−]) must have been calculated in step before		mass of CH ₃ COONa in 400 cm ³ = 28.7 × $\frac{400}{1000}$ = 11.48 g \checkmark
				COMMON ECF 4.592 OR 4.6 g AWARD 4 marks use of 400/1000 twice

F325	Mark Sch	eme	June 2014
			ALLOW variants of Henderson–Hasselbalch equation. $pK_{a} = -\log(1.75 \times 10^{-5}) = 4.757 \checkmark Calc: 4.75696$ $\log \frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]} = pH - pK_{a} = 5 - 4.757 = 0.243$ $\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]} = 10^{0.243} = 1.75 \checkmark$ $[CH_{3}COOH] = 1.75 \times 0.200 = 0.350 \text{ mol dm}^{-3} \checkmark$ $n(CH_{3}COONa/CH_{3}COO^{-}) \text{ in } 400 \text{ cm}^{3}$ $= 0.350 \times \frac{400}{1000} = 0.14(0) \text{ (mol)} \checkmark$ mass CH_{3}COONa = 0.140 × 82.0 = 11.48 OR 11.5 (g) \checkmark
	Total	17	

C	Quest	ion	Answer	Marks	Guidance
7	(a)		 Definition The e.m.f. (of a half-cell) compared with/connected to a (standard) hydrogen half-cell/(standard) hydrogen electrode ✓ Standard conditions Units essential Temperature of 298 K / 25°C AND (solution) concentrations of 1 mol dm⁻³ AND pressure of 100 kPa OR 10⁵ Pa OR 1 bar ✓ 	2	As alternative for e.m.f., ALLOW voltage OR potential difference OR p.d. OR electrode potential OR reduction potential OR redox potential ALLOW /(standard) hydrogen cell IGNORE S.H.E. (as abbreviation for standard hydrogen electrode) ALLOW 1M DO NOT ALLOW 1 mol ALLOW 1 atmosphere/1 atm OR 101 kPa OR 101325 Pa
7	(b)	(i)	$2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq) \checkmark$	1	State symbols not required ALLOW = provided that reactants on LHS
7	(b)	(ii)	Assume Cu ²⁺ Cu OR Cu half cell unless otherwise stated. [Cu ²⁺] decreases OR < 1 mol dm ⁻³ AND Equilibrium (shown in table) shifts to left ✓		<i>FULL ANNOTATIONS MUST BE USED</i> <i>ALLOW</i> [Cu ²⁺] less than standard concentration/1 mol dm ⁻³ <i>DO NOT ALLOW</i> water reacts with Cu ²⁺ OR Cu
			more electrons are released by Cu ✓		ALLOW E (for Cu ²⁺ Cu) is less positive / more negative /decreases IGNORE standard electrode potential (<i>Cell no longer standard</i>) IGNORE E° decreases CARE DO NOT ALLOW statements about silver E changing (CON)
			The cell has a bigger difference in $E \checkmark$	3	IGNORE just 'cell potential increases' (in the question) The final mark is more subtle and is a consequence of the less positive E value of the copper half cell

June	2014
------	------

7	(C)	(i)	no/less $CO_2 \mathbf{OR} H_2O$ is only product OR greater efficiency \checkmark	1	IGNORE less pollution IGNORE less carbon emissions IGNORE less fossil fuels used IGNORE no/less greenhouse gas OR no global warming (<i>H</i> ₂ O vapour is a greenhouse gas)
7	(c)	(ii)	liquefied/as a liquid AND under pressure/pressurised ✓	1	IGNORE adsorption or absorption IGNORE low temperature DO NOT ALLOW liquidise processes are described in the question
7	(d)	(i)	$E = -2.31 (V) \checkmark$	1	– sign AND 2.31 required for the mark
7	(d)	(ii)	$4AI(s) + 4OH^{-}(aq) + 3O_2(g) + 6H_2O(I) → 4AI(OH)_4^{-}(aq)$ species ✓ balance ✓	2	$\begin{array}{l} \textbf{IGNORE state symbols} \\ \textbf{ALLOW multiples} \\ \textbf{ALLOW 1 mark for an equation in which OH^- are balanced but have not been cancelled, e.g. \\ 4Al(s) + 16OH^-(aq) + 3O_2(g) + 6H_2O(l) \rightarrow \\ & 4Al(OH)_4^-(aq) + 12OH^-(aq) \end{array}$
			Total	11	

C	Question	Answer	Marks	Guidance
8	(a)	Fe ₂ O ₃ + 3Cl ₂ + 10OH ⁻ → 2FeO ₄ ²⁻ + 6Cl ⁻ + 5H ₂ O \checkmark ✓ First mark for all 6 species Second mark for balancing	2	ALLOW multiplesALLOW oxidation half equation for two marks $Fe_2O_3 + 10OH^- \rightarrow 2FeO_4^{2^-} + 5H_2O + 6e^-$ Correct species would obtain 1 mark- question: equation for oxidationALLOW variants forming H ⁺ for 1 mark, e.g: $Fe_2O_3 + 3Cl_2 + 5OH^- \rightarrow 2FeO_4^{2^-} + 6Cl^- + 5H^+$ $Fe_2O_3 + 3Cl_2 + 5OH^- \rightarrow 2FeO_4^{2^-} + 5HCl + Cl^-$
8	(b)	$Ba^{2+}(aq) + FeO_4^{2-}(aq) \rightarrow BaFeO_4(s) \checkmark$	1	Balanced ionic equation AND state symbols required DO NOT ALLOW +2 or –2 for ionic charges
8	(c)	Reason can ONLY be correct from correct reducing agent	2	IGNORE H ⁺ OR acidified ALLOW iodide/potassium iodide but DO NOT ALLOW iodine ALLOW I [−] loses electrons AND to form I ₂ ALLOW Fe(6+) OR Fe ⁶⁺

8 (d)		FULL ANNOTATIONS MUST BE USED
	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 51.8%, award 4 marks .	For alternative answers, look first at common ECFs below. Then check for ECF credit possible using working below IF a step is omitted but subsequent step subsumes previous, then award mark for any missed step
	$n(S_2O_3^{2-})$ used = $0.1000 \times \frac{26.4}{1000}$ = 2.64×10^{-3} (mol) \checkmark	Working must be to at least 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.880 allow 0.88
	$n(\text{FeO}_4^{2-}) = \frac{1}{2} \times \frac{2}{3} \times \frac{2.64}{10^{-3}} = 8.8(0) \times 10^{-4} \pmod{10^{-4}}$	ECF answer above $\times \frac{1}{2} \times \frac{2}{3}$ This mark may be seen in 2 steps via I_2 but the mark is for both steps combined
	Mass BaFeO ₄ in sample = $8.8 \times 10^{-4} \times 257.1$ g = 0.226248 g \checkmark	ECF 257.1 × answer above
	% purity = $\frac{0.226248}{0.437} \times 100 = 51.8\% \checkmark$ MUST be to one decimal place (in the question)	ECF $\frac{\text{answer above}}{0.437} \times 100$ ALLOW 51.7% FROM 0.226 g BaFeO ₄ (earlier rounding)
	As an alternative for the final two marks, ALLOW : Theoretical amount of BaFeO ₄ = $\frac{0.437}{257.1}$ = 0.00170 (mol) \checkmark % purity = $\frac{8.8 \times 10^{-4}}{1.70 \times 10^{-3}} \times 100$ = 51.8% \checkmark	4 Common ECFs: No × 2/3 for $n(FeO_4^{2-})$: % purity = 77.7%/77.6% 3 marks No ÷ 2 for $n(FeO_4^{2-})$: % purity = 25.9% 3 marks 24.6 used instead of 26.4: % purity = 48.2% 3 marks

	F325	Mark Sch	eme	June 2014
8	(e)	gas: O₂ ✓ precipitate: Fe(OH)₃ ✓		DO NOT ALLOW names IGNORE a balancing number shown before a formula ALLOW Fe(OH) ₃ (H ₂ O) ₃
		equation: $2\text{FeO}_4^{2-} + 5\text{H}_2\text{O} \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe}(\text{OH})_3 + 4\text{OH}^-$ OR $2\text{FeO}_4^{2-} + \text{H}_2\text{O} + 4\text{H}^+ \rightarrow 1\frac{1}{2}\text{O}_2 + 2\text{Fe}(\text{OH})_3 \checkmark$	3	ALLOW multiples ALLOW 2FeO ₄ ²⁻ + 11H ₂ O \rightarrow 1½O ₂ + 2Fe(OH) ₃ (H ₂ O) ₃ + 4OH ⁻
		Total	12	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

